8 research outputs found

    Exploiting Low Complexity Beam Allocation in Multi-User Switched Beam Millimeter Wave Systems

    Get PDF
    Switched-beam systems offer a promising solution for realizing multi-user communications at millimeter wave (mmWave) frequencies. A low-complexity beam allocation (LBA) algorithm has been proposed to solve the challenging problem of maximizing sum data-rates. However, there are practical limitations in mmWave systems, such as restrictions in the number of available radio frequency transceiver chains at the base station, sensitivity to sidelobe interference and the beam generation techniques. In this paper, using generalized beam-patterns, we present the maximum sum data-rates achievable in switched-beam mmWave systems compared with fixed-beam systems by applying LBA. Then, the impact on maximum sum data rates of actual beam-patterns, obtained from a practical mmWave lens antenna, which have higher and non-uniform sidelobes compared with the theoretical beams, is assessed. Finally, as a guide for practical wireless system design, benchmarks are established for relative sidelobe levels that provide acceptable sum data-rate performance when considering generalized beam patterns

    Public Field Trial of a Multi-RAT (60 GHz 5G/LTE/WiFi) Mobile Network

    Get PDF
    A public field trial showcasing an operational multi-Radio Access Technology (RAT) mobile network that was implemented in one of the largest shopping mall in Warsaw, Poland. The network supports novel 60 GHz 5G mobile access as well as legacy LTE and WiFi services All mobile access services of the network are interconnected via optical fiber to the data centers of a mobile network operator and an internet service provider. Fronthauling for the 60 GHz 5G hotspot radio access unit (RAU) and for LTE is realized by analog Radio-over-Fiber (RoF) via a fiber-optic distributed antenna system (DAS). The 60 GHz 5G radio access units (RAUs) for the enhanced mobile broadband (eMBB) use case and the WiFi access point (AP) are both backhauled via optical Gigabit Ethernet. The 60 GHz RAUs for the eMBB and hotspot use case feature 2D beam-switching and 1D beam-steering, respectively. Inter-RAT switching between the different mobile services with seamless user experience is achieved using a Mobile IP system with Fast Initial Link Setup (FILS)

    Multi RAT (WiFi/ LTE/ 5G) Mobile Network featuring RoF Fronthaul, 60 GHz Beam-Switching and Mobile IP

    Get PDF
    We report on a public field trial demonstrating seamless handover in a multi Radio Access Technology mobile network supporting WiFi, LTE, and new 5G radio access in the 60 GHz band for full-duplex enhanced mobile broadband and 5G broadcast hotspots

    Radio technologies for 5G using Advanced Photonic Infrastructure for Dense user environments - D321 Report on Beam Steerable Directive Antennas

    Get PDF
    This deliverable reports the beam-steering architecture implementation in the RAPID 5G. Various beam-steering antenna methods are reviewed and several are chosen for implementation. The construction of the antenna for each of the chosen methods and measurement results for the constructed prototypes are reported

    An end-to-end 5G fiber wireless A-RoF/IFoF link based on a 60 GHz beamsteering antenna and an InP EML

    No full text
    An IFoF/V-band link is experimentally presented in a 100MBd QPSK downlink transmission across 7km fiber by a high-power EML and over-the-air by 60GHz beamforming antenna with 32-radiating elements, comprising the first demonstration of a cost-effective end-to-end directional Fiber-Wireless link for dense 5G millimeter-wave networks

    Int5Gent : an integrated end-to-end system platform for verticals and data plane solutions beyond 5G

    No full text
    Int5Gent targets the integration of innovative data plane technology building blocks under a flexible 5G network resource, slice and application orchestration framework, providing a complete 5G system platform for the validation of advance 5G services and Internet of Things (IoT) solutions. The platform can act as the enabler for the transition beyond the current 5G networking capabilities allowing novel and state-ofthe-art data transport and edge processing solutions to be evaluated under a cutting-edge network orchestration framework, with intelligent service allocation and management capabilities. A sample of the envisioned technologies include: flexible multi-Radio Access Technology (multi-RAT) baseband signal processing, millimeter Wave (mmWave)technology solutions at 60GHz and 150GHz bands, hardware-based edge processor with Time Sensitive Networking (TSN), Graphical Processing Unit (GPU)processing capabilities, and elastic Software Defined Networking (SDN)-based photonic data transport. The integration of the technology blocks is performed as part of an overall architecture that promotes edge processing and is orchestrated by a Network Function Virtualization Orchestrator (NFVO) compatible framework with edge node extensions at the network layer and an overlay vertical services application orchestrator at the user plane layer
    corecore